Features of a table are also something that should be taken into account when determining the most appropriate option. Some tables offer an air flotation mode which allows easy repositioning of a table on the work surface of the CMM. This can be particularly useful if additional space is needed when the rotary table is not required. Some other tables also offer multi-orientation positioning, and even multi axis rotation. Depending on the complexity of a part, these options can offer considerable benefits in ease of use and performance.
How It Is Achieved
Specifying table size for a PCMM is comparatively much simpler. In most cases, PCMMs are used with manually controlled precision rotary stages, so the performance of drive components is not a consideration. However, access, future-proofing and portability are all considerations. A larger tabletop size may offer greater capacity for large parts, but could also be less practical to move around the shop floor. Some systems offer interchangeable tabletops meaning that you can switch between large and small tops depending upon your application.
Integration of a rotary table into a coordinate measuring system requires changes from both a hardware and software perspective.
1. Table Size: There are several considerations when determining the correct size of table to select for a CMM. Not only does the table have to physically fit on the CMM (and thus is dictated by the size of the CMM bed), but the parts being measured also have a bearing. Not only do the parts (and associated tooling) need to fit onto the table, but the mass of theportable overall load also needs to be considered. A rotary table will have a maximum payload specification which is usually included in the product datasheet. However, if that load is spread unevenly or unusually, this could have an impact on the drive performance. If this is the case, it is advisable to seek advice before specifying a unit.
The utility of an additional rotary axis is multifaceted. For PCMMs, it significantly expands the measuring volume and facilitates the inspection of larger and more complex objects by providing additional angles of approach. Typically, to otherwise measure large objects can involve moving the measurement device around the part, or moving the part into more advantageous positions. Not only does this slow down a measurement, but can also introduce increased uncertainty in measurement values.
In the case of a CMM, in addition to selecting a table configuration that suits the CMM design and parts that will be measured, the CMM must also be capable of accepting signals from a fourth axis through its controller. Whilst many CMMs in the field have this capability even when it is not in use, this is not universal. If this is the case, the controller may be upgradeable by the CMM OEM or a third party service company. Alternatively, some precision rotary table manufacturers are also able to supply a standalone 4th axis control unit that performs this task.
2. Accuracy and Repeatability: The additional axis should have high accuracy and repeatability specifications that align with the measuring system’s capabilities and the tolerances of the parts being inspected. Typically, precision rotary table manufacturers will report rotational performance data in arc seconds (an arc second being ~0.0003 deg). However, CMM manufacturers will specify accuracy and repeatability of their devices as a dimensional value. The consequence of this difference (which is a result of the differing nature of how performance is quantified in different types of motion) means that performance is also dictated by a size of the part being measured. For example, a very tall part might see a disproportionate effect of the “coning” effect of a table in results compared to a smaller part. The consequence is that consideration of performance should be given to each specific application. Again, in the case of any doubt, it is wise to seek advice on this matter. Notwithstanding, a typical precision table will usually have a negligible effect on the performance of a CMM. Indeed, any uncertainty introduced is normally more than counteracted by the benefits and improvements introduced by the reduction in movement of the X, Y and Z axes.
A coordinate measuring system, whether a CMM or a PCMM, measures the geometry of physical objects by sensing discrete points on their surfaces with a probe, and in some cases using an additional sensor for 3D measurement. These systems can be manually controlled or operate via computer control, with measurements taken along the X, Y, and Z axes. The accuracy and reliability of CMMs and PCMMs are foundational to quality control in manufacturing and engineering.
What Is An Additional Axis?
The integration of rotary tables as an additional axis in coordinate measuring systems marks a significant advancement in the field of metrology. This addition opens up new possibilities for manufacturers and engineers to achieve higher precision and efficiency in their measurement processes. As the demand for more complex and precise measurements grows, the adoption of rotary stages is set to become a pivotal feature in the evolution of coordinate measuring technology, ensuring that quality and precision remain at the heart of the manufacturing process.
منبع: https://www.qualitymag.com/articles/97792-the-next-dimension-of-precision-integrating-rotary-tables-into-coordinate-measuring-systems
✕