New Method Simplifies Construction of Complex Materials


New Method Simplifies Construction of Complex Materials

User-friendly interface enables researchers to quickly design unique cellular metamaterial structures

Makatura wrote the paper with co-lead author Bohan Wang, an MIT postdoc; Yi-Lu Chen, a graduate student at the Institute of Science and Technology Austria (ISTA); Bolei Deng, an MIT postdoc; Chris Wojtan and Bernd Bickel, professors at ISTA; and senior author Wojciech Matusik, a professor of electrical engineering and computer science at MIT who leads the Computational Design and Fabrication Group within the MIT Computer Science and Artificial Intelligence Laboratory. The research was recently presented at SIGGRAPH.

A unified method

Published: Monday, August 21, 2023 – 12:02

Engineers are constantly searching for materials with novel, desirable property combinations. For example, an ultrastrong, lightweight material could be used to make airplanes and cars more fuel-efficient, or a material that is porous and biomechanically friendly could be useful for bone implants.

“By choosing a specific subspace ahead of time, you limit your exploration and introduce a bias based on your intuition,” says Makatura. “While this can be useful, intuition can be incorrect, and some of the other shapes may have also been worth exploring for your particular application.”

“We came up with a representation that can cover all of the different shapes engineers have traditionally shown interest in. Because you can build them all the same way, that means you can switch between them more fluidly,” says MIT electrical engineering and computer science graduate student Liane Makatura, co-lead author of a paper on this technique.

“With our representation, you can also start combining these shapes. Perhaps a unit cell containing both a TPMS structure and a beam structure could give you interesting properties. But so far, those combinations really haven’t been explored to any degree,” Makatura says.

In addition, the researchers conducted a user study with 10 individuals who had little prior experience modeling metamaterials. The users were able to successfully model all six structures they were given—and most agreed that the procedural graph representation made the process easier.

This GIF shows a rendered cellular metamaterial that the researchers designed using their system. This rendering, a 4 x 4 x 4 tiling of the unit cell, is composed of beams, shells, and simple volumetric shapes. It would have been much more difficult to create this using another approach because of the different types of architectural elements involved. GIF courtesy of the researchers.

With their graph-based representation, a user builds a metamaterial skeleton using building blocks that are created by vertices and edges. For instance, to create a beam structure, one places a vertex at each end point of the beam and connects them with a line. Then the user employs a function over that line to specify the thickness of the beam, which can be varied so one part of the beam is thicker than another.

The researchers used their system to re-create structures that spanned many unique classes of metamaterials. Once they had designed the skeletons, each metamaterial structure took only seconds to generate.

They also created automated exploration algorithms, giving each a set of rules and then turning it loose in their system. In one test, an algorithm returned more than 1,000 potential truss-based structures in about an hour.

The process for surfaces is similar—the user marks the most important features with vertices and then chooses a solver that infers the rest of the surface.

This research is partially funded by a National Science Foundation Graduate Research Fellowship, the MIT Morningside Academy Design Fellowship, the Defense Advanced Research Projects Agency (DARPA), an ERC Consolidator Grant, and the NewSat project.

Quality Digest


With their graph-based representation, a user builds a metamaterial skeleton using smaller building blocks that are created by vertices and edges. The system outputs the entire graph-based procedure (seen below each yellow shape), which shows every operation the user took to reach the final structure. Image courtesy of the researchers.

“Our representation makes all sorts of structures more accessible to people,” says Makatura. “We were especially pleased with users’ ability to generate TPMS. These complex structures are usually difficult even for experts to generate. Still, one TPMS in our study had the lowest average modeling time out of all six structures, which was surprising and exciting.”

However, someone has to pay for this content. And that’s where advertising comes in. Most people consider ads a nuisance, but they do serve a useful function besides allowing media companies to stay afloat. They keep you aware of new products and services relevant to your industry. All ads in Quality Digest apply directly to products and services that most of our readers need. You won’t see automobile or health supplement ads.

At the end of the process, the system outputs the entire graph-based procedure, showing every operation the user took to reach the final structure—all the vertices, edges, solvers, transformations, and thickening operations.

Within the user interface, designers can preview the current structure at any point in the building procedure and directly predict certain properties, such as its stiffness. Then, the user can iteratively tweak some parameters and evaluate it again until a suitable design is reached.

A user-friendly framework

In the future, the researchers want to enhance their technique by incorporating more complex skeleton thickening procedures so the system can model a wider variety of shapes. They also want to continue exploring the use of automatic generation algorithms.

So please consider turning off your ad blocker for our site.

Our PROMISE: Quality Digest only displays static ads that never overlay or cover up content. They never get in your way. They are there for you to read, or not.

Cellular metamaterials—artificial structures composed of units, or cells, that repeat in various patterns—can help achieve these goals. But it’s difficult to know which cellular structure will lead to the desired properties. Even if one focuses on structures made of smaller building blocks, like interconnected beams or thin plates, there are an infinite number of possible arrangements to consider. So, engineers can manually explore only a small fraction of all the cellular metamaterials that are hypothetically possible.

Their approach, like a specialized CAD (computer-aided design) system for metamaterials, allows an engineer to quickly model even very complex metamaterials and experiment with designs that may have otherwise taken days to develop. The user-friendly interface also enables the user to explore the entire space of potential metamaterial shapes, since all building blocks are at their disposal.

Researchers from MIT and the Institute of Science and Technology Austria have created a technique to include many different building blocks of cellular metamaterials into one, unified graph-based representation. They used this representation to create a user-friendly interface that an engineer can use to quickly and easily model metamaterials, edit the structures, and simulate their properties. Image courtesy of the researchers.

First published Aug. 2, 2023, on MIT News.