Measuring Up: Kibble Dynamic Force Reference


The Kibble Dynamic Force Reference (KDFR) transmits an accurate and traceable dynamic force to a structure or sensor under test. The device essentially consists of a hollow cylinder magnet surrounded by a wire coil attached to an armature. When a current is run through the coil, it creates an electromagnetic force that pushes the armature forward, transferring a dynamic force to any external structure in contact with the armature. The response to the dynamic force reveals properties of the structure. Credit: Sean Kelley/NIST

First published July 18, 2023, in NIST News.

Thanks,
Quality Digest

منبع: https://www.qualitydigest.com/inside/innovation-article/measuring-kibble-dynamic-force-reference-081023.html

The KDFR does. It is a primary standard—that is, it does not require calibration because its operation is based on fundamental physical relations. Its targeted vibration frequency range is from a few Hz (hertz, cycles per second) up to several kHz (kilohertz, thousands of cycles per second), with uncertainty in the range of 1%. It is portable and designed to be deployed onsite wherever measurements are needed.

When using impact hammers, the fact that the output force is a single pulse is a strong limitation in determining system frequency responses.

Measuring vibrational resonance frequencies is important, for example, to avoid exciting them in an airplane structure that could shake itself until damaged, or as a method of measuring material elastic properties. But it is not necessary to know the force accurately in order to measure the resonant frequencies.


Prototype KDFR device mounted on laboratory bench for testing. Credit: NIST

“Separating the current and voltage measurements into two steps requires a high degree of uniformity and stability of the magnetic field, which is difficult to achieve in a dynamic measurement,” Chijioke says. “Therefore, in the KDFR, the current, voltage, and velocity are all measured simultaneously and synchronously at a rapid sampling rate (tens of kHz), providing the generated force output at each instant of time.”

Accurate measurements can, however, be achieved if the sensor systems are calibrated both dynamically and, importantly, as assembled for the measurement, rather than relying on an off-site calibration of the force sensor in a standards laboratory.

“Knowing the force accurately is required when you want an accurate measurement of frequency response of the structurer rather than just knowing its resonant frequencies,” Chijioke says. (Frequency response is the ratio of motion-to-force input as a function of frequency.)

However, someone has to pay for this content. And that’s where advertising comes in. Most people consider ads a nuisance, but they do serve a useful function besides allowing media companies to stay afloat. They keep you aware of new products and services relevant to your industry. All ads in Quality Digest apply directly to products and services that most of our readers need. You won’t see automobile or health supplement ads.

Dynamic system models accounting for these effects are sometimes used to try to compensate for them. But they are generally of limited accuracy and often require measurements from additional sensors.

It is expected to be used for applications such as structural testing (including modal testing, which identifies the natural vibration modes of an object) of vehicles, buildings, and bridges as well as for calibrating force sensor systems used to measure dynamic forces, such as in materials testing (dynamic tensile testing, fatigue testing, impact testing), and in aerodynamic balances in wind tunnel tests.

“The KDFR could be used, for example, to determine how much of an input force a support structure would transmit to what it is supporting, to infer from measurements of strains and deformations on an aircraft surface in flight what forces were acting on the aircraft, and of course to calibrate the dynamic response of a force sensor,” he says.

Kibble technology

So please consider turning off your ad blocker for our site.

The most commonly used such secondary force standard is a so-called “impact hammer” or “impulse hammer,” which is a hand-held calibrated force sensor (typically piezoelectric, converting the applied mechanical force of the hammer strike into an electric voltage) that is struck against the target system to apply a pulse force.

Existing methods for generating known dynamic forces for calibrations and other applications commonly use a calibrated force sensor that detects an electrical signal, such as a rise in voltage or change in resistance, in response to the applied force. They are not primary devices and require periodic recalibration.

Static force, such as the weight of a person standing motionless on a bathroom scale or the force that an office full of equipment exerts on a high-rise floor, can be easily determined using scales, balances, load cells, and the like because static force doesn’t change over time. It’s straightforward to calibrate such devices with an unvarying force such as gravity acting on a known mass.

The Kibble principle allows accurate determination of the mechanical force generated by a current flowing in a wire that moves in a magnetic field.

In addition, measurements focused on behavior at specific frequencies can be challenging. These require the ability to excite the structure at the specific frequency of interest, together with an accurate measurement of the exciting force. Existing techniques do not combine these two aspects very well.


Various impact hammers with electrical connections. Credit: NIST

To meet that need, NIST scientists have devised the Kibble Dynamic Force Reference (KDFR), a traceable, dynamic force source based on the same principle used in a Kibble balance to generate an exactly known static force to counterbalance the weight of an unknown mass.

However, testing for dynamic force—such as automobile crash testing, fatigue testing of materials, and the changing forces applied during machining—has traditionally been difficult to measure because dynamic force changes continuously as it is applied. In many applications, a time-varying force causes large errors in instruments calibrated to measure static force. It is thus necessary to calibrate the response of these instruments to dynamic forces.

Our PROMISE: Quality Digest only displays static ads that never overlay or cover up content. They never get in your way. They are there for you to read, or not.

Innovation

Measuring Up: Kibble Dynamic Force Reference

A primary standard for testing structures and calibrating force sensor systems